Thermodynamic Description of Excess Isotherms in High-Pressure Adsorption of Methane, Argon and Nitrogen

ALEXANDER HERBST AND PETER HARTING

Institute of Non-Classical Chemistry at the University of Leipzig, Permoserstr, 15 D-4318 Leipzig, Germany herbst@inc.uni.leipzig.de harting@inc.uni-leipzig.de http://www.uni-leipzig.de/~inc

Received January 26, 2001; Revised February 26, 2002; Accepted February 27, 2002

Abstract. In the present work the supercritical fluids argon, methane and nitrogen were picked out as examples, and the results of analysis concerning the adsorption of these fluids at activated carbon Norit R1 (Norit company, Germany) and SCS-3 (ISPE, Kiev) at different temperatures up to a pressure of 50 MPa are presented and discussed in this paper. The principle of working of the measuring device is described in this context as well.

A three-parameter isothermal equation is used to represent the adsorption equilibrium. The isothermal equation is based on a physical model concept which has already been used for the modelling of adsorption processes with a pressure up to 15 MPa.

Keywords: excess adsorption, high pressure, gravimetric measurement, supercritical fluids, activated carbon

Introduction

Physical adsorption of fluids onto solids is of interest in the transportation and storage of fuel and radioactive gases, the separation and cleaning of materials, solid-phase extractions, adsorbent regenerations using supercritical fluids, supercritical fluid chromatography and critical-point drying. Although physical adsorption of pure gases on different porous solids has been extensively studied over a wide range of temperatures and pressures, the number of works related to adsorption at high pressures is limited.

In adsorption experiments the excess adsorption only can be measured, which is defined as the excess gas present in the pores and on the surface of the adsorbent and above it corresponding to the density of the gas in the bulk phase at the given temperature and pressure.

The aims of this research work are the measurement and the thermodynamic description of the excess in the adsorption of gases up to pressures of 50 MPa.

Different adsorbents were tested to determine for example the influence of the structure of pores under high pressure to obtain specific characteristics of these materials.

Characterization of Adsorbents

Two different adsorbents were tested: activated carbon Norit R1 (Norit company, Germany) and activated carbon SCS-3 from the Institute of Sorption and Problems of Endoecology (Ukraine). Both adsorbents were exposed to high pressure up to 50 MPa during the adsorption process.

To compare both adsorbents the surfaces of them were firstly recorded by a digital scanning electron microscope DSM 940 (Zeiss company, Germany) in different enlargements (Fig. 1). Secondly, the adsorbents were analyzed by nitrogen adsorption at 77 K using ASAP-2000M (Micromeritics company, USA). Nitrogen adsorption was needed to determine the

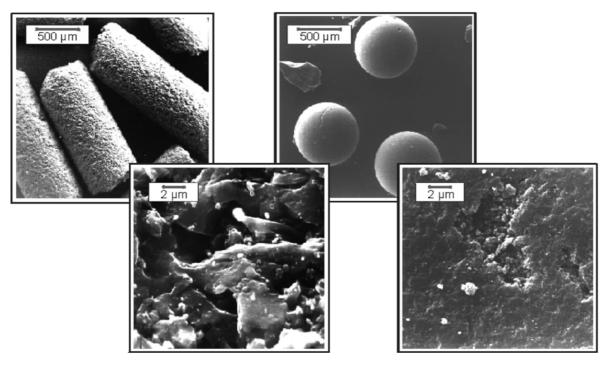


Figure 1. Pictures of the adsorbent Norit R1 (left) and SCS-3 (right).

specific areas and the specific pore volume of the adsorbent studied by using the following methods: the classical BET equation and its extended form to n-layers, the t-plot method and the density functional theory (DFT). The resulting data are summarized in Table 1.

The BET surface areas 1339 and 1094 m²/g, the micro-pore volumes 0.6446 and 0.4382 cm³/g, and the total pore volumes 0.7074 and 1.0534 cm³/g were obtained for the conventional activated carbon Norit R1 and the synthetic carbon SCS-3 (sterene-divinylbenzene copolymer), respectively.

Experiment

High pressure adsorption measurements were performed on a magnetic suspension balance, Rubotherm

Table 1. Properties of adsorbents.

	Norit R1	SCS-3
BET surface (m ² /g)	1339	1094
Internal surface (t-plot) (m ² /g)	1307	929
Volume of micro-pores (cm ³ /g)	0.6446	0.4382
Total volume (cm ³ /g)	0.7074	1.0534

(Bochum, Germany). The balance working up to 50 MPa, allows the determination of specific quantities, e.g. solubility of substances in fluids, density of fluids and adsorption behaviour of fluids on adsorbents even in corrosive media without danger of pollution or destruction of the balance. In comparison to traditional balances the test substance is not directly connected with the balance, it hangs on a so-called suspension magnet. The weight to measure is transmitted by magnetic suspension coupling from a closed and pressure-proof metal container to an external microbalance. The suspension consists of a measuring load, a sensor core and a permanent magnet (Fig. 2). Regulation systems keep the electric magnet in free suspension and transmit the weight to measure to the external balance.

The measuring cell consists of a conventional high-pressure stainless steel sample cell, which was connected to a gas reservoir via an air driven gas booster (Haskel, USA). The gases used were ultra-high purity grade supplied by Air Liquid. A known amount of active carbon (\sim 4 g), which was outgassed at 423 K, was placed into the sample pan of the balance. Before the measurements the system was evacuated at 2×10^{-3} hPa. Equilibrium weights were achieved in 20–30 min.

Table 2.	Systems alrea	dy measured.
----------	---------------	--------------

Adsorbent	25°C	40°C	55°C	70°C
Norit R1 SCS-3	He, CH ₄ , Ar, N ₂ CH ₄ , Ar, N ₂	CH ₄ , Ar, N ₂ CH ₄ , Ar, N ₂	He, CH ₄ , Ar, N ₂	He, CH ₄ , Ar, N ₂

The measurements of excess adsorption isotherms of the pure gases methane, argon and nitrogen on the both adsorbents were carried out at four temperatures from 298, 313, 328 and 343 K over a wide pressure range from 0 to 50 MPa (Table 2). These adsorption isotherms are typical excess isotherms with a distinct maximum.

The originally measured m^s values of the balance for all gases are presented in the Appendix in Tables 7–19.

Analysis of Row Gravimetric Adsorption Measurement Data

Row gravimetric adsorption measurement data m^s include also quantities concerning experimental equipment, for example the container which contains the sample. The parameter $V_{\rm cont}$ represent the volume of the container. It can be determined separately by buoyancy measurements with the empty balance and with the sample container without adsorbents. The resulting values for all measured systems are summarized in Table 3. First the row data must corrected by the equipment quantities to come to equipment independent data, to the so-called reduced mass Ω in the sense

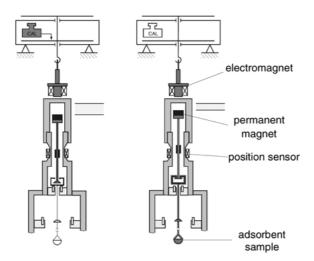


Figure 2. Operating principle of magnetic suspension balance.

Table 3. Mass of adsorbent and the measured values for $V_{\rm cont}$ and $ar{V}_{
m ads,He}.$

	298 K	313 K	328 K	343 K	$V_{\rm cont}~({\rm cm}^3)$
m (g), Nitrogen	4.08	3325	4.12680	4.14252	0.70492
m (g), Argon		4.08325		4.14252	0.70492
m (g), Methane		4.37	7217		1.97883
$\bar{V}_{\rm ads, He}~({\rm cm}^3/{\rm g})$	0.46161	0.46898	0.47335	0.47768	

of Staudt et al. (1993).

$$\Omega = m^{\rm s} + \rho_{\rm fluid} \cdot V_{\rm cont} \tag{1}$$

With the gravimetric adsorption measurements only the sum of excess Γ and buoyancy $\rho_{\rm fluid}V_{\rm ads}$ can be obtained (Staudt et al., 1993; Talu, 1998). The results for the specific excess $\bar{\Gamma}$ are as follows:

$$\bar{\Gamma} = \frac{\Omega + \rho_{\text{fluid}} \cdot V_{\text{ads}}}{m} \tag{2}$$

with $\bar{\Gamma}$ is specific excess adsorption, $\rho_{\rm fluid}$ is density of the fluid, $V_{\rm ads}$ is volume of the empty adsorbent, and m mass of adsorbent at microbalance.

The skeletal volume of the adsorbent $V_{\rm ads}$ can be determined by means of buoyancy measurements with helium as fluid (Sircar, 1999; Staudt et al., 1993; Talu, 1998). It is based on the assumption that helium is not adsorbed ($\Gamma=0$) but fills out the pore volume without changing the pore structure of the adsorbent. The resulting, so called helium volume of porous solids $V_{\rm ads,He}$ can be calculated from the microbalance signal $m^{\rm s}$ and knowing $V_{\rm cont}$ as

$$V_{\text{ads,He}} = \frac{-(\rho_{\text{He}} \cdot V_{\text{cont}} + m^{\text{s}})}{\rho_{\text{He}}}$$
(3)

Helium on Activated Carbon Norit R1

The skeletal volume of the adsorbent can be determined by means of buoyancy measurements with helium as fluid (Neimark and Ravikovich, 1997; Staudt

et al.; Malbrunot et al., 1997; Vazquez et al., 1987). The values of the volume of the adsorbent in Fig. 3 were calculated for each experimental point at pressure p. Assuming Helium not be adsorbed and only buoyancy occur, the buoyancy related volume of adsorbent can be calculated using the experimental point at pressure p and vacuum (p = 0).

$$V_{\rm ads}(p) = -\frac{\Omega(p) - \Omega(p=0)}{\rho_{\rm He}(p) - \rho_{\rm He}(p=0)}$$

The experimental determination of the volume of the activated carbons by means of this method shows at low

Table 4. Thermodynamic quantities I_0 , k_0 , v_0 and \bar{V}_{ads} for the different temperatures by measurements on SCS-3.

Gas	T (K)	I ₀ (mg/g)	k ₀ (MPa)	v ₀ (cm ³ /mol)	\bar{V}_{ads} (cm ³ /g)
Nitrogen	298.15	172.23	2.003	280.23	0.36
	313.15	184.83	2.741	267.32	0.36
Argon	298.15	360.77	3.412	242.94	0.35
	313.15	361.04	4.504	225.33	0.36
Methane	298.15	121.75	1.135	379.74	0.33
	313.15	157.71	1.698	356.18	0.32
	313.15	157.71	1.698	356.18	0.32

Table 5. Thermodynamic quantities I_0, k_0, v_0 and \bar{V}_{ads} for the different temperatures by measurements on Norit R1.

Gas	<i>T</i> (K)	I ₀ (mg/g)	k ₀ (MPa)	v_0 (cm ³ /mol)	$\bar{V}_{\rm ads}$ (cm ³ /g)
Nitrogen	298.15	190.41	2.03	292.49	0.29
	313.15	192.93	2.76	282.27	0.30
	328.15	196.05	3.66	272.02	0.31
	343.15	197.64	4.86	259.98	0.31
Argon	298.15	454.97	4.24	228.93	0.33
	313.15	452.24	5.33	221.61	0.34
	328.15	474.06	7.50	207.33	0.35
	343.15	463.09	9.14	197.93	0.36
Methane	298.15	144.45	0.95	414.23	0.27
	313.15	147.01	1.42	380.07	0.27
	328.15	140.97	1.74	353.92	0.30
	343.15	140.67	2.22	330.03	0.31

Table 6. Adsorption heats of the gases methane, argon and nitrogen on Norit R1.

Gas	Methane	Argon	Nitrogen
q (kJ/mol)	-15.81	-15.22	-16.64

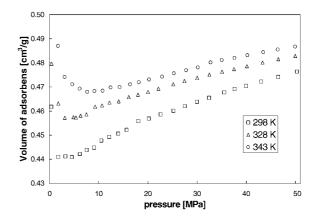


Figure 3. Measurements of the buoyancy with helium on activated carbon Norit R1 at 298, 328 and 343 K.

pressures a decrease of the volume. At a certain pressure the volume increase again with increasing pressure (see in Fig. 3 by example of Norit R1). This behavior can be explained by the pressure dependence of the volume of porous solids. First, with increasing pressure the adsorbent will be compressed by the surrounding fluid. The increase of the volume is caused by penetration of helium in to the adsorbent combined with swelling of the crystal structure. Additionally, a temperature dependence can be observed here.

The classical method for determination of the volume of adsorbent is described in Staudt et al., Staudt et al. (1993), and Talu (1998). The results using this method are shown in Fig. 4, where the specific mass of the sample of adsorbent at the microbalance were plotted in dependence of the density of fluid (Sircar, 1999; Malbrunot et al., 1992). The slop of this isotherm is volume $\bar{V}_{\rm ads,He}$. On the basis of the temperature dependence of volume of adsorbent, $\bar{V}_{\rm ads,He}$ were determined

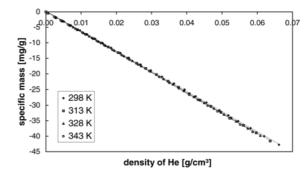


Figure 4. Determination of helium-volume of Norit R1 at 298, 313, 328 and 343 K.

for all measurement temperatures (Fig. 4). With increasing temperature an increase of the volume of porous solids can be observed (see Table 3).

The Three-Parameter Isothermal Equation

The thermodynamic description of the excess is possible with the following three-parameter isothermal equation of the form:

$$\bar{\Gamma}(p,T) = \frac{f}{f + k_0 \exp\left(\frac{v_0 \cdot p}{R \cdot T}\right)} \cdot I_0 \tag{4}$$

with I_0 is maximal loading (mg/g), k_0 is Henry-constant (MPa), v_0 is molar volume (cm³/mol), f is fugacity (MPa), p is pressure (MPa), R gas constant (cm³ *MPa/mol * K), and T is temperature (K).

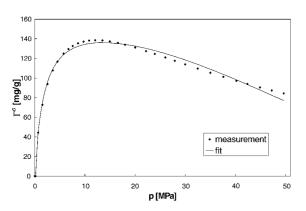


Figure 5. The first modelling of the excess adsorption of nitrogen on Norit R1 at 298 K.

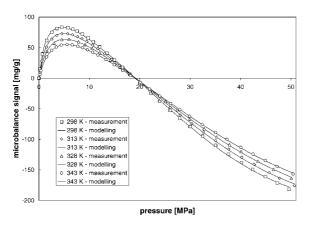


Figure 6. Modellings of the measured values of nitrogen on Norit R1 at 298, 313, 328 and 343 K.

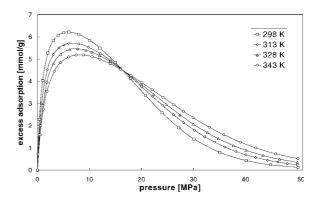


Figure 7. Calculated adsorption excess of methane on Norit R1 at 298, 313, 328 and 343 K.

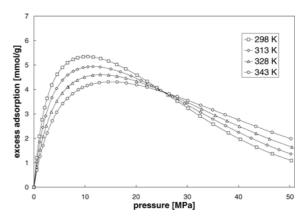


Figure 8. Calculated adsorption excess of argon on Norit R1 at 298, 313, 328 and 343 K.

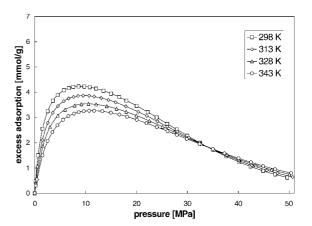


Figure 9. Calculated adsorption excess of nitrogen on Norit R1 at 298, 313, 328 and 343 K.

Table 7.	Measurements of the buoyance	with helium on activated carbo	on Norit R1 at 298, 328 and 343 K.

	298 K			328 K		343 K		
p (MPa)	m ^s (mg)	$\bar{\Omega}$ (mg/g)	p (MPa)	m ^s (mg)	$\bar{\Omega}$ (mg/g)	p (MPa)	m ^s (mg)	$\bar{\Omega}$ (mg/g)
0.000	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00
0.350	-1.49	-0.36	0.410	-1.63	-0.39	0.380	-1.66	-0.40
1.750	-7.16	-1.73	1.770	-6.82	-1.65	1.710	-6.54	-1.58
3.221	-13.09	-3.17	3.101	-11.77	-2.85	3.051	-11.38	-2.76
4.531	-18.29	-4.43	4.831	-18.21	-4.41	4.631	-17.08	-4.14
6.161	-24.73	-5.99	5.381	-20.23	-4.90	6.121	-22.38	-5.42
7.542	-30.16	-7.31	6.321	-23.70	-5.74	7.632	-27.68	-6.71
9.062	-36.04	-8.73	7.491	-27.97	-6.78	9.112	-32.87	-7.96
10.532	-41.80	-10.13	9.262	-34.50	-8.36	10.792	-38.68	-9.37
12.122	-47.87	-11.60	10.672	-39.55	-9.58	12.422	-44.33	-10.74
13.983	-54.88	-13.29	12.182	-44.95	-10.89	14.263	-50.55	-12.25
15.673	-61.20	-14.83	14.053	-51.50	-12.48	16.373	-57.65	-13.97
18.054	-70.15	-16.99	16.123	-58.75	-14.23	18.174	-63.64	-15.42
20.194	-77.85	-18.86	17.974	-65.11	-15.77	20.214	-70.36	-17.05
22.585	-86.40	-20.93	20.024	-72.07	-17.46	22.905	-79.06	-19.15
25.185	-95.49	-23.13	22.144	-79.20	-19.19	25.265	-86.62	-20.98
27.506	-103.57	-25.09	25.165	-89.19	-21.61	27.786	-94.56	-22.91
29.986	-112.04	-27.14	27.435	-96.58	-23.40	30.146	-101.89	-24.68
32.436	-120.27	-29.14	30.016	-104.83	-25.40	32.747	-109.98	-26.64
35.527	-130.50	-31.61	32.517	-112.72	-27.31	35.007	-116.79	-28.29
37.638	-137.35	-33.27	35.097	-120.71	-29.24	37.608	-124.47	-30.15
39.988	-144.84	-35.09	37.528	-128.11	-31.04	40.228	-132.13	-32.01
43.069	-154.50	-37.43	40.158	-136.00	-32.95	43.469	-141.43	-34.26
46.499	-165.04	-39.98	43.349	-145.44	-35.23	46.429	-149.76	-36.28
50.320	-176.54	-42.77	46.519	-154.62	-37.46	49.950	-159.47	-38.63
			49.980	-164.40	-39.83			

The equation was derived with a physical model based on the equality of the chemical potentials of the adsorbed and the fluid phase (Harting et al.). Until now this equation was applied for pressures up to about 15 MPa (Salem, 1997). However, the first applications of the three-parameter isothermal equation on the gases methane, argon and nitrogen over the entire pressure range of up to 50 MPa showed significant deviation values (see Fig. 5 by the example of nitrogen at 298 K). These deviations become still larger in the cases of methane and argon. This was caused primarily by the necessary buoyancy correction, which was carried out with helium as reference gas. Therefore, this aspect requires more attention.

Extension of the Three-Parameter Isothermal Equation

The Eq. (5) results from Eqs. (1), (2) and (4). Equation (5) allows the modelling of the specific reduced (equipment independent) mass $\bar{\Omega}$ with \bar{V}_{ads} as an additional fitting parameter:

$$\bar{\Omega} = \frac{f}{f + k_0 \exp\left(\frac{v_0 \cdot p}{R \cdot T}\right)} \cdot I_0 - \rho_{\text{fluid}} \cdot \bar{V}_{\text{ads}}$$
 (5)

with $\bar{\Omega}$ is specific reduced mass and \bar{V}_{ads} is specific volume of the adsorbent.

Therefore, it is proposed to use the precisely measured values of adsorption for the thermodynamic modelling without additional information (volume of

Table 8. Measurements with nitrogen on activated carbon Norit R1 at 298 K.

 $\bar{\Omega}$ $\bar{\Gamma}_{He}$ $\bar{\Gamma}_{3-PIG}$ $\rho_{\rm fluid}$ (g/cm³) (MPa) (mg) (mg/g) (mg/g) (mg/g) 0.00000 0.000 0.00 0.0000.0000.0000.00192 0.170 60.74 15.207 16.094 14.453 0.670 0.00758 161.09 40.760 44.259 44.498 1.530 0.01733 251.60 64.609 72.607 73.484 80.031 2.541 0.02879 93.320 91.495 306.49 3.581 0.04060 332.36 88.405 107.146 101.926 0.05115 4.511 340.94 92.328 115.941 107.597 5.731 0.06497 337.94 93.979 123.969 111.995 6.711 0.07603 327.89 93.426 128.520 113.915 7.562 0.08558 315.10 91.943 131.445 114.770 8.612 0.09730 294.93 89.028 133.943 115.046 9.722 0.10960 269.60 84.947 135.539 114.609 10.822 0.12166 80.223 136.382 241.81 113.593 12.052 0.13498 208.22 74.296 136.601 111.905 13.493 0.15030 166.67 66.765136.142 109.321 14.983 0.16581 121.85 58.466 135.002 106.083 16.583 0.18203 72.36 49.146 133.169 102.083 18.014 0.19611 27.75 40.652 131.178 98.131 20.034 0.21531 -35.2028.550 127.937 92.071 22.194 0.23489 -102.0215.566 123.993 85.137 23.945 0.25003 -153.955.463 120.879 79.303 26.045 0.26735 -214.78-6.445116.965 72.188 27.916 0.28201 -266.98-16.698113.479 65.867 29.986 0.29744 -322.83-27.714109.583 59.009 32.486 0.31499 -387.00-40.398105.002 51.085 35.027 0.33171 -448.68-52.617100.501 43.593 37.608 0.34763 -507.83-64.35596.112 36.682 40.188 0.36257 -563.60-75.43491.930 30.541 42.408 0.37471 -609.12-84.48688.481 25.890 44.919 0.38770 -657.81-94.16784.797 21.316 47.259 0.39918 -700.82-102.72081.539 17.670 0.41026 -742.41-110.99278.385 14.520 49.640

Table 9. Measurements with nitrogen on activated carbon Norit R1 at 313 K.

p (MPa)	ρ_{fluid} (g/cm ³)	m ^s (mg)	$\bar{\Omega}$ (mg/g)	$\bar{\Gamma}_{He}$ (mg/g)	$\bar{\Gamma}_{3-PIG}$ (mg/g)
0.000	0.00000	0.00	0.000	0.000	0.0000
0.190	0.00204	49.72	12.530	13.489	12.1817
0.570	0.00614	115.11	29.250	32.127	31.3468
1.510	0.01626	208.30	53.820	61.443	61.1465
2.571	0.02766	261.04	68.705	81.678	79.6978
3.551	0.03819	285.73	76.570	94.482	89.9909
4.551	0.04892	296.48	81.053	103.994	96.7282
5.701	0.06120	296.93	83.284	111.985	101.5948
6.661	0.07140	290.17	83.390	116.877	104.0927
7.632	0.08165	278.37	82.270	120.565	105.5964
8.542	0.09121	263.83	80.359	123.135	106.3002
9.502	0.10121	245.89	77.693	125.160	106.4609
10.672	0.11329	221.11	73.708	126.836	106.0141
11.692	0.12369	197.32	69.677	127.683	105.1580
13.063	0.13745	163.18	63.693	128.155	103.4545
14.483	0.15145	125.58	56.901	127.929	101.1419
15.903	0.16515	86.68	49.739	127.190	98.3768
17.914	0.18397	30.55	39.243	125.523	93.8457
20.344	0.20580	-38.38	26.129	122.644	87.6365
22.034	0.22034	-85.78	17.032	120.370	82.9794
24.125	0.23761	-143.26	5.935	117.369	76.9702
26.045	0.25276	-195.02	-4.125	114.414	71.3156
27.996	0.26747	-245.93	-14.054	111.382	65.5436
30.326	0.28417	-304.71	-25.566	107.703	58.7352
32.587	0.29950	-359.28	-36.283	104.178	52.3441
35.027	0.31516	-415.89	-47.445	100.359	45.7968
37.648	0.33100	-473.70	-58.868	96.362	39.2801
40.228	0.34568	-527.66	-69.548	92.570	33.4555
42.719	0.35907	-576.59	-79.220	89.176	28.4260
45.639	0.37386	-631.25	-90.052	85.282	23.2723
47.730	0.38390	-668.36	-97.407	82.636	20.0604
50.680	0.39736	-718.19	-107.287	79.068	16.1585

the adsorbents). The parameters I_0 , k_0 , v_0 and \bar{V}_{ads} of Eq. (5) are fitted to the specific reduced mass measured directly at the microbalance. The fit was successful for methane, argon and nitrogen up to 50 MPa at different temperatures. Modellings for both adsorbents used were made. The results show (by the example of nitrogen on Norit R1, Fig. 6) that the Three-Parameter Isothermal Equation for the description of the adsorption isotherms for both different

adsorbents are suitable (Norit R1 is a microporous adsorbent, and SCS-3 indicates a large proportion of meso- and macropores). The results of the modellings of methane, argon and nitrogen are summarized for Norit R1 at four different temperatures in Table 5 and for SCS-3 at two temperatures in Table 4, respectively.

The volume of the adsorbent \bar{V}_{ads} , determined from the respective modelling is, as expected, approximately

Table 10. Measurements with nitrogen on activated carbon Norit R1 at 328 K.

p (MPa)	$\rho_{\rm fluid}$ (g/cm ³)	m ^s (mg)	$\begin{array}{c} \bar{\Omega} \\ (mg/g) \end{array}$	$\begin{array}{c} \bar{\Gamma}_{He} \\ (mg/g) \end{array}$	$ar{\Gamma}_{3-PIG}$ (mg/g)
0.000	0.00000	0.00	0.000	0.000	0.0000
0.230	0.00236	45.32	11.385	12.503	11.3590
1.610	0.01652	181.36	46.768	54.587	53.5147
3.021	0.03094	238.14	62.990	77.635	74.4685
4.531	0.04631	261.11	71.182	93.102	86.6106
5.981	0.06097	262.63	74.054	102.913	93.1655
7.872	0.07988	246.15	73.291	111.102	97.5104
9.142	0.09243	227.53	70.924	114.677	98.7349
10.552	0.10620	202.15	67.125	117.394	98.9996
12.062	0.12071	171.19	62.102	119.240	98.3264
14.153	0.14035	123.18	53.823	120.259	96.1831
16.083	0.15798	75.62	45.309	120.088	93.2718
17.984	0.17480	26.90	36.377	119.121	89.7523
19.964	0.19175	-24.23	26.882	117.648	85.5630
22.535	0.21281	-90.78	14.354	115.089	79.5554
25.135	0.23303	-157.44	1.654	111.959	73.0585
27.395	0.24971	-213.88	-9.172	109.032	67.2405
29.946	0.26758	-275.19	-20.977	105.681	60.6509
32.777	0.28625	-340.69	-33.659	101.840	53.4869
35.287	0.30186	-396.17	-44.437	98.450	47.3993
37.778	0.31651	-448.76	-54.679	95.141	41.7027
40.088	0.32942	-495.72	-63.853	92.078	36.7843
43.459	0.34714	-560.21	-76.453	87.866	30.3018
46.549	0.36233	-616.10	-87.400	84.113	25.1120
50.050	0.37845	-675.48	-99.036	80.107	20.0916

identical. This proves the plausibility of the description.

The maximal loading I_0 , which corresponds to the maximal quantity of adsorbate in the adsorption space, was, as expected, temperature-independent. The comparison of the maximal loading between both the measured activated carbons shows that the value I_0 depends directly on the micro-pore volumes of the adsorbents. Especially Norit R1, with a larger micropore volume has the larger I_0 for all gases presented. This corresponds to the reality and proves, therefore, the plausibility of the modelling.

The molar volume v_0 is a characteristic of the adsorbate phase. It is independent of the type of the adsorbent, which is acknowledged by the results of the fits. Consequently the molar volumes are identical for both adsorbents with the same gas.

Table 11. Measurements with nitrogen on activated carbon Norit R1 at 343 K.

	at 343 K.				
p OATD	ρ_{fluid}	m ^s	$ar{\Omega}$	$\bar{\Gamma}_{\text{He}}$	$\bar{\Gamma}_{3-PIG}$
(MPa)	(g/cm ³)	(mg)	(mg/g)	(mg/g)	(mg/g)
0.000	0.00000	0.00	0.000	0.000	0.000
0.230	0.00226	24.70	6.439	7.518	8.759
0.440	0.00432	50.80	13.187	15.250	15.827
1.530	0.01500	143.50	37.732	44.895	42.561
2.571	0.02515	189.00	50.628	62.640	58.448
3.481	0.03399	211.30	57.617	73.855	67.959
4.461	0.04348	223.90	62.340	83.109	75.277
5.581	0.05426	228.20	65.253	91.171	81.130
6.631	0.06429	225.60	66.349	97.059	84.918
7.742	0.07481	216.90	66.035	101.771	87.633
8.662	0.08346	206.40	64.956	104.825	89.119
9.642	0.09259	192.80	63.203	107.434	90.104
10.692	0.10228	175.70	60.687	109.546	90.605
11.702	0.11150	157.60	57.845	111.106	90.644
13.283	0.12569	127.00	52.802	112.843	90.005
14.963	0.14046	90.90	46.511	113.609	88.583
16.643	0.15489	52.90	39.694	113.681	86.568
18.164	0.16760	17.50	33.220	113.282	84.338
20.084	0.18323	-28.30	24.701	112.226	81.096
21.974	0.19809	-73.40	16.222	110.845	77.541
23.995	0.21340	-121.40	7.110	109.048	73.452
26.125	0.22890	-171.70	-2.532	106.812	68.920
27.956	0.24171	-213.90	-10.657	104.803	64.920
29.876	0.25463	-257.40	-19.079	102.554	60.679
32.396	0.27083	-312.70	-29.825	99.547	55.136
35.017	0.28680	-368.20	-40.661	96.338	49.504
37.307	0.30006	-414.80	-49.784	93.549	44.767
40.058	0.31518	-468.50	-60.325	90.231	39.380
42.498	0.32791	-514.10	-69.295	87.341	34.924
44.919	0.33994	-557.50	-77.847	84.536	30.834
47.239	0.35095	-597.40	-85.718	81.927	27.234
50.410	0.36524	-649.10	-95.913	78.557	22.829

From the dependence of the logarithm of the Henry-constant k_0 on the reciprocal temperature for the gases methane, argon and nitrogen the adsorption heats were calculated. The values of the adsorption heats are in an acceptable range. They are summarized by the example of Norit R1 in Table 6.

From the calculated parameters the excess can be calculated. For all gases a common intersection results in the isotherms, which is represented in Figs. 7–9 for methane, argon and nitrogen on Norit R1.

Table 12. Measurements with argon on activated carbon Norit R1 at 298 K.

 $\bar{\Omega}$ $\bar{\Gamma}_{He}$ $\bar{\Gamma}_{3-PIG}$ $\rho_{\rm fluid}$ (g/cm³) (MPa) (mg) (mg/g) (mg/g) (mg/g) 0.00000 0.000 0.000 0.00 m0.000.000 0.00857 0.530 192.06 48.52 52.472 48.271 1.060 0.01720 310.64 79.05 86.985 83.653 1.600 0.02604 395.19 101.28 113.302 110.930 132.954 2.100 0.03428 454.10 117.13 130.655 2.581 0.04223 497.59 129.15 148.648 145.913 145.51 172.016 3.491 0.05741 553.70 167.747 0.07542 192.474 4.561 590.59 157.66 185.291 5.561 0.09240 602.94 163.61 206.263 196.413 0.10949 6.561 602.13 166.36 216.905 204.003 7.662 0.12840 588.71 166.34 225.613 209.392 8.552 0.14377 569.80 164.37 230.730 212.031 0.16265 540.17 160.37 235.450 213.632 9.642 10.552 0.17844 509.98 155.70 238.073 213.860 11.572 0.19615 471.67 149.38 239.922 213.138 13.033 0.22146 409.21 138.45 240.678 210.645 14.583 0.24820 335.95 125.12 239.693 206.502 237.301 16.193 0.27571 254.92 110.03 200.926 17.964 0.30553 161.59 92.32 233.357 193.636 20.174 0.34191 43.19 69.60 227.432 183.256 0.37353 -65.58220.852 22.154 48.43 173.111 24.075 0.40316 -169.7528.03 214.128 162.769 26.235 0.43515 -284.695.40 206.271 150.808 28.026 0.46054 -376.92-12.80199.784 140.813 30.146 0.48925 -483.70-34.00191.844 129.062 32.476 0.51913 -595.50-56.22183.412 116.456 35.037 0.54998 -712.89-79.64174.231 103.199 -104.8738.008 0.58333 -839.41164.401 88.839 40.348 0.60788 -933.61-123.70156.899 78.418 43.529 0.63903 -1054.68-147.97147.005 65.624 -169.2446.599 0.66691 -1161.16138.611 54.794 50.330 0.69822 -1288.21-194.95127.355 43.586

The significance and the position of this intersection is to be explained in connection with the characteristics of the respective gas (compressibility) and with the values of the absolute adsorption. This aspect is discussed in the following publication.

Gibbs Surface Excess

According to the Gibbssian thermodynamics the Gibbs excess amount adsorbed $\bar{\Gamma}_{He}$ was also calculated us-

Table 13. Measurements with argon on activated carbon Norit R1 at 313 K.

p (MPa)	$\frac{\rho_{\text{fluid}}}{(\text{g/cm}^3)}$	m ^s (mg)	$\bar{\Omega}$ (mg/g)	Γ̄ _{He} (mg/g)	$\bar{\Gamma}_{3-PIG}$ (mg/g)
0.000	0.00000	0.00	0.00	0.000	0.000
0.570	0.00877	165.79	42.12	46.231	41.706
1.150	0.00877	270.00	69.19	77.510	73.650
1.720	0.02661	342.25	88.41	100.893	97.937
2.270	0.02501	394.22	102.62	119.136	116.558
3.511	0.05472	470.44	124.66	150.321	146.754
4.421	0.06914	502.46	134.99	167.418	161.900
5.601	0.08796	521.62	142.93	184.183	175.777
6.621	0.10431	523.40	146.19	195.109	184.053
7.682	0.12136	514.23	146.89	203.804	189.998
8.502	0.13458	501.19	145.98	209.094	193.157
9.622	0.15267	476.73	143.11	214.707	195.871
10.552	0.16769	451.28	139.47	218.112	196.982
11.542	0.18366	420.20	134.62	220.751	197.233
12.963	0.20652	369.27	126.09	222.941	196.226
15.013	0.23928	286.71	111.52	223.740	192.553
16.873	0.26863	204.79	96.53	222.511	187.503
18.994	0.30149	105.93	77.99	219.384	180.275
20.934	0.33086	12.42	60.16	215.326	172.640
23.025	0.36163	-88.83	40.68	210.274	163.640
24.795	0.38688	-174.71	24.00	205.443	155.576
27.125	0.41891	-286.11	2.25	198.711	144.591
29.476	0.44975	-395.54	-19.23	191.697	133.331
32.577	0.48813	-534.55	-46.64	182.278	118.582
34.977	0.51606	-636.78	-66.86	175.167	107.486
37.467	0.54347	-738.09	-86.94	167.938	96.450
40.028	0.57005	-837.42	-106.67	160.670	85.740
42.468	0.59397	-926.93	-124.47	154.093	76.216
45.579	0.62261	-1034.74	-145.93	146.067	65.127
47.920	0.64290	-1110.62	-161.01	140.504	57.581
50.240	0.66204	-1182.74	-175.36	135.123	50.772

ing the so called helium volume of porous solids $\bar{V}_{\rm ads,He}$. The resulting values are summerized in the Tables 7–19.

The Bender Equation

A special thermodynamic equation of state introduced by Bender (Sievers and Schulz, 1981) mentions pressure p for pure substances as a function of temperature T and molar density ρ_m of the fluid. The equation

Table 14. Measurements with argon on activated carbon Norit R1 at $328\,$ K.

p (MPa)	ρ_{fluid} (g/cm ³)	m ^s (mg)	$\bar{\Omega}$ (mg/g)	Γ̄ _{He} (mg/g)	$\bar{\Gamma}_{3-PIG}$ (mg/g)
0.000	0.00000	0.00	0.00	0.000	0.000
0.590	0.00866	119.22	30.69	34.791	33.107
1.210	0.01780	212.20	55.04	63.467	60.594
1.820	0.02683	279.61	73.11	85.809	82.269
2.420	0.03574	329.53	86.87	103.793	99.661
3.421	0.05067	387.13	103.56	127.540	122.242
4.481	0.06656	423.98	115.33	146.834	139.853
5.541	0.08253	443.22	122.79	161.857	152.846
6.661	0.09944	449.15	127.17	174.238	162.918
6.591	0.09838	450.12	127.22	173.791	162.379
7.522	0.11246	446.75	128.82	182.058	168.703
8.492	0.12715	436.36	128.82	189.005	173.624
9.852	0.14775	412.78	126.60	196.539	178.249
11.502	0.17269	372.30	120.99	202.734	181.110
12.963	0.19468	328.51	114.06	206.212	181.740
14.603	0.21919	273.16	104.74	208.495	180.793
16.243	0.24347	212.10	93.98	209.221	178.479
17.984	0.26888	142.54	81.33	208.601	174.854
20.074	0.29882	55.28	65.13	206.576	169.268
22.034	0.32626	-28.78	49.28	203.713	163.109
24.155	0.35512	-121.24	31.61	199.712	155.710
26.505	0.38600	-222.82	12.07	194.784	146.882
28.076	0.40596	-290.37	-1.03	191.133	140.745
29.946	0.42899	-370.02	-16.56	186.507	133.292
32.787	0.46242	-487.27	-39.50	179.389	121.873
35.457	0.49216	-593.13	-60.29	172.670	111.243
37.768	0.51658	-681.01	-77.60	166.928	102.272
40.168	0.54074	-768.68	-94.90	161.062	93.280
43.419	0.57157	-881.42	-117.19	153.368	81.773
46.059	0.59512	-968.17	-134.37	147.337	73.076
50.450	0.63160	-1102.94	-161.07	137.897	60.020

has the form of a virial equation stopped after the sixth power. It possesses also an exponential function as correction term:

$$p = RT\rho_m + B\rho_m^2 + C\rho_m^3 + D\rho_m^4 + E\rho_m^5 + F\rho_m^6 + (G + H\rho_m^2)\rho_m^3 \exp(-a_{20}\rho_m^2)$$

R is the universal gas constant, B, C, D, E, F, G and H are temperature dependent coefficients of the equation of state, a_{20} is a non-linear parameter.

Table 15. Measurements with argon on activated carbon Norit R1 at $343\,$ K.

at 545 r	Λ.				
p (MPa)	$ ho_{\rm fluid}$ (g/cm ³)	m ^s (mg)	$\frac{\bar{\Omega}}{(mg/g)}$	$\begin{array}{c} \bar{\Gamma}_{He} \\ (mg/g) \end{array}$	$\begin{array}{c} \bar{\Gamma}_{3-PIG} \\ (mg/g) \end{array}$
0.000	0.00000	0.00	0.00	0.000	0.000
0.610	0.00856	99.40	25.45	29.539	27.790
1.210	0.01700	171.80	44.37	52.487	50.085
1.780	0.02505	226.30	58.89	70.855	67.697
2.581	0.03637	283.40	74.60	91.976	87.899
3.571	0.05043	331.50	88.61	112.696	107.389
4.461	0.06311	359.70	97.57	127.717	121.034
5.621	0.07967	379.20	105.10	143.153	134.733
6.541	0.09282	385.70	108.90	153.244	143.079
7.552	0.10727	384.70	111.12	162.364	150.247
8.692	0.12358	375.50	111.67	170.707	156.342
9.462	0.13458	365.10	111.04	175.324	159.481
10.422	0.14827	348.70	109.41	180.233	162.471
11.242	0.15994	331.40	107.22	183.618	164.337
12.813	0.18220	292.40	101.59	188.627	166.443
14.543	0.20653	241.90	93.54	192.199	166.951
16.263	0.23047	185.50	84.00	194.089	165.990
18.074	0.25531	121.90	72.87	194.830	163.744
20.094	0.28253	46.60	59.33	194.290	160.066
22.114	0.30917	-31.40	45.03	192.718	155.440
26.415	0.36356	-201.10	13.32	186.991	143.393
27.996	0.38269	-263.70	1.46	184.267	138.459
30.096	0.40734	-346.30	-14.28	180.302	131.644
32.607	0.43565	-442.50	-32.68	175.421	123.263
34.977	0.46122	-531.10	-49.72	170.597	115.258
37.417	0.48638	-619.30	-66.73	165.605	107.051
40.048	0.51221	-711.00	-84.47	160.203	98.365
43.389	0.54318	-822.50	-106.12	153.353	87.735
46.559	0.57078	-922.70	-125.61	147.042	78.191
50.230	0.60073	-1032.10	-146.92	140.037	67.934

Table 16. Measurements with methane on activated carbon Norit R1 at $298\,$ K.

p (MPa)	ρ _{fluid} (g/cm ³)	m ^s (mg)	$\bar{\Omega}$ (mg/g)	$\bar{\Gamma}_{He}$ (mg/g)	$\bar{\Gamma}_{3-PIG}$ (mg/g)
0.00	0.00000	0.000	0.000	0.000	0.000
0.32	0.00208	152.680	35.863	36.825	34.750
0.74	0.00485	232.690	55.416	57.656	58.363
1.82	0.01216	315.380	77.637	83.250	83.408
3.20	0.02190	340.180	87.719	97.829	93.999
4.69	0.03294	329.720	90.321	105.525	97.489

(Continued on next page.)

Table 16. (Continued).

p (MPa)	ρ_{fluid} (g/cm ³)	m ^s (mg)	$\begin{array}{c} \bar{\Omega} \\ (mg/g) \end{array}$	$\begin{array}{c} \bar{\Gamma}_{He} \\ (mg/g) \end{array}$	$\bar{\Gamma}_{3-PIG}$ (mg/g)
6.07	0.04362	301.140	88.620	108.756	97.630
7.99	0.05916	242.980	82.349	109.657	95.165
10.19	0.07770	158.810	71.489	107.355	89.910
12.02	0.09343	80.450	60.687	103.815	84.137
13.92	0.10971	-6.150	48.247	98.889	77.153
16.05	0.12745	-103.270	34.064	92.896	68.516
18.13	0.14382	-193.600	20.812	87.201	59.675
20.08	0.15804	-273.030	9.082	82.036	51.405
21.86	0.16998	-340.590	-0.966	77.498	44.151
24.00	0.18301	-414.870	-12.058	72.422	36.083
25.85	0.19318	-473.210	-20.799	68.375	29.852
27.98	0.20376	-533.970	-29.908	64.149	23.632
30.05	0.21302	-587.500	-37.959	60.375	18.578
32.62	0.22334	-647.350	-46.980	56.115	13.568
34.98	0.23183	-696.890	-54.466	52.549	10.045
37.51	0.24007	-743.770	-61.461	49.357	7.204
40.11	0.24775	-787.400	-67.964	46.398	5.076
43.46	0.25667	-838.290	-75.567	42.913	3.203
46.69	0.26441	-882.160	-82.096	39.958	2.039
49.45	0.27047	-916.170	-87.132	37.720	1.381

Table 17. Measurements with methane on activated carbon Norit R1 at 313 $\,$ K.

p (MPa)	ρ_{fluid} (g/cm^3)	m ^s (mg)	$\bar{\Omega}$ (mg/g)	$\bar{\Gamma}_{He}$ (mg/g)	$\bar{\Gamma}_{3-PIG}$ (mg/g)
0.00	0.00000	0.000	0.000	0.000	0.000
0.33	0.00204	115.790	27.408	28.366	26.617
0.92	0.00574	205.470	49.595	52.289	52.816
1.66	0.01048	260.660	64.360	69.274	69.576
3.02	0.01944	297.620	76.868	85.983	83.498
4.41	0.02894	298.140	81.287	94.857	89.067
5.98	0.04006	276.620	81.401	100.190	90.950
7.63	0.05216	237.890	78.017	102.478	90.292
10.11	0.07091	160.170	68.729	101.986	86.360
11.92	0.08483	95.020	60.125	99.908	82.022
14.02	0.10092	14.530	48.999	96.329	75.926
16.13	0.11673	-67.890	37.304	92.048	69.010
17.96	0.12991	-138.660	27.085	88.012	62.629
20.01	0.14390	-216.370	15.642	83.130	55.327
21.94	0.15620	-284.720	5.575	78.830	48.534
24.12	0.16901	-356.250	-4.988	74.274	41.201

Table 17. (Continued).

p (MPa)	ρ_{fluid} (g/cm^3)	m ^s (mg)	$\bar{\Omega}$ (mg/g)	$\begin{array}{c} \bar{\Gamma}_{He} \\ (mg/g) \end{array}$	$\bar{\Gamma}_{3-PIG}$ (mg/g)
26.02	0.17925	-413.900	-13.540	70.524	35.266
28.11	0.18957	-471.610	-22.068	66.837	29.349
29.90	0.19769	-517.360	-28.856	63.858	24.841
32.23	0.20737	-572.030	-36.978	60.275	19.766
34.62	0.21638	-623.420	-44.655	56.825	15.454
37.52	0.22624	-679.500	-53.018	53.086	11.316
40.06	0.23406	-723.830	-59.619	50.151	8.532
43.36	0.24326	-776.240	-67.443	46.641	5.850
46.87	0.25205	-826.160	-74.881	43.327	3.878
50.17	0.25955	-868.620	-81.200	40.523	2.616

Table 18. Measurements with methane on activated carbon Norit R1 at 328 $\,$ K.

p (MPa)	ρ _{fluid} (g/cm ³)	m ^s (mg)	$\bar{\Omega}$ (mg/g)	$\bar{\Gamma}_{He}$ (mg/g)	$\bar{\Gamma}_{3-PIG}$ (mg/g)
0.00	0.00000	0.00	0.000	0.000	0.000
0.42	0.00248	112.11	26.765	27.940	26.174
0.93	0.00553	174.49	42.412	45.030	45.050
1.64	0.00984	224.46	55.790	60.445	60.368
3.09	0.01885	264.94	69.127	78.049	75.384
4.47	0.02769	268.33	73.905	87.013	81.446
6.37	0.04025	244.71	74.187	93.239	84.402
7.49	0.04783	221.81	72.380	95.022	84.560
8.96	0.05794	185.09	68.556	95.981	83.654
10.78	0.07061	132.20	62.194	95.616	81.292
12.34	0.08151	82.24	55.702	94.286	78.470
14.02	0.09319	25.44	47.997	92.110	74.809
15.98	0.10659	-42.43	38.537	88.991	69.925
17.93	0.11951	-109.82	28.972	85.544	64.601
20.19	0.13380	-185.75	18.074	81.411	58.086
22.00	0.14462	-243.87	9.677	78.135	52.764
23.91	0.15538	-302.49	1.137	74.685	47.191
25.79	0.16528	-356.98	-6.843	71.393	41.867
27.79	0.17509	-410.82	-14.719	68.159	36.488
29.73	0.18391	-459.89	-21.948	65.108	31.636
32.39	0.19500	-522.14	-31.167	61.137	25.661
35.70	0.20735	-591.21	-41.377	56.771	19.399
38.26	0.21594	-639.28	-48.483	53.733	15.431
40.09	0.22164	-671.25	-53.216	51.698	13.028
43.46	0.23129	-725.44	-61.241	48.241	9.441
46.80	0.23993	-774.12	-68.465	45.107	6.788
50.52	0.24865	-822.92	-75.681	42.017	4.655

(Continued.)

Table 19. Measurements with methane on activated carbon Norit R1 at 343 K.

p (MPa)	ρ_{fluid} (g/cm ³)	m ^s (mg)	$\bar{\Omega}$ (mg/g)	$\bar{\Gamma}_{He}$ (mg/g)	$\bar{\Gamma}_{3-PIG}$ (mg/g)
0.00	0.00000	0.000	0.000	0.000	0.000
0.43	0.00243	93.400	22.461	23.621	21.806
0.90	0.00511	148.020	36.166	38.606	37.384
1.52	0.00868	189.210	47.203	51.349	50.812
3.14	0.01821	233.490	61.644	70.341	68.654
4.94	0.02911	236.030	67.159	81.063	76.653
6.04	0.03591	225.570	67.846	85.001	78.870
8.07	0.04870	191.230	65.780	89.044	80.156
10.03	0.06124	146.260	61.169	90.421	79.282
12.26	0.07557	86.420	53.970	90.069	76.712
14.04	0.08694	33.310	46.969	88.502	73.824
15.98	0.09915	-25.840	38.963	86.323	70.063
18.05	0.11181	-89.980	30.025	83.436	65.534
20.14	0.12411	-153.690	21.021	80.308	60.592
21.96	0.13435	-207.540	13.338	77.516	56.110
24.03	0.14540	-266.380	4.883	74.340	50.933
26.20	0.15628	-325.220	-3.652	71.001	45.545
28.25	0.16589	-377.520	-11.267	67.974	40.601
30.38	0.17520	-428.590	-18.734	64.955	35.708
32.59	0.18417	-477.950	-25.960	62.016	30.970
34.87	0.19276	-524.930	-32.820	59.259	26.502
37.43	0.20166	-574.930	-40.229	56.100	22.032
40.67	0.21192	-632.360	-48.719	52.512	17.212
43.22	0.21931	-673.510	-54.786	49.974	14.048
46.67	0.22848	-724.410	-62.280	46.860	10.561
50.24	0.23710	-772.340	-69.341	43.916	7.780

Conclusion

In the course of this project thermodynamically consistent sets of data of adsorption equilibria were measured and analyzed highly precisely by the use of a magnetic suspension balance at pressures of up to 50 MPa. Gravimetric measurements of adsorption with the pure gases methane, argon and nitrogen were carried out at 298, 313, 328 and 343 K on two different adsorbents. The activated carbons were characterized with regard to their volume of pores and their internal surface.

The description of the excess by means of the original three-parameter isothermal equation, which was applied in the pressure range of up to 15 MPa is not possible due to the "unknown" or inaccurate volume

of the adsorbent. Therefore, it was proposed to use the precisely measured values of adsorption directly for the thermodynamic modelling without additional information (volume of the adsorbents). The excess is determined thereby subsequently from the parameters of the extended three-parameter isothermal equation.

Notation

p	Pressure (MPa)
$rac{p}{\Gamma_{ m He}}$	Excess adsorption with buoyancy
	correction (mg/g)
$\bar{\Gamma}_{3-PIG}$	Excess adsorption calculated from
	3-PIG (mg/g)
I_0	Maximal loading (mg/g)
k_0	Henry-constant (MPa)
v_0	Molar volume (cm ³ /mol)
f	Fugacity (MPa)
R	Gas constant (cm $^3 * MPa/mol * K$)
T	Temperature (K)
$m^{\rm s}$	Microbalance signal (mg)
m	Mass of adsorbent (g)
$\bar{\Omega}$	Specific mass of the sample of adsorbent
	at the micro-balance (mg/g)
$ ho_{ m fluid}$	Density of the fluid (g/cm ³)
$ ho_{ m He}$	Density of Helium (g/cm ³)
$V_{ m ads}$	Volume of the adsorbent (cm ³)
$ar{V}_{ m ads}$	Specific volume of the adsorbent (cm ³ /g)
$V_{ m cont}$	Volume of container (cm ³)

Acknowledgment

Financial support of this project by the Deutsche Forschungsgemeinschaft (Project IIC1-Ha 1 1951/8-1) is gratefully acknowledged. Discussion with Alan Myers are as well gratefully acknowledged.

References

Harting, P., J. Germanus, and S. Beutekamp, Fortschrittberichte VDI, Reihe 3 Verfahrenstechnik, **554**, 147–161.

Malbrunot, P., D. Vidal, J. Vermesse, R. Chahine, and T.K. Bose, "Adsorption Measurements of Argon, Neon, Krypton, Nitrogen and Methane on Activated Carbon up to 650 MPa," *Langmuir*, 8, 577–580 (1992).

Malbrunot, P., D. Vidal, J. Vermesse, R. Chahine, and T.K. Bose, "Adsorbent Helium Density Measurement and Its Effect on Adsorption Isotherms at High Pressure," *Langmuir*, **13**, 539–544 (1997).

Neimark, A.V. and P.I. Ravikovich, "Calibration of Pore Volume in Adsorption Experiments and Theoretical Models," *Langmuir*, 13, 5148–5160 (1997).

- Platzer, B. and G. Maurer, "Application of a Generalized Bender Equation of State to the Description of Vapour-Liquid Equilibria in Binary Systems," *Fluid Phase Equilibria*, **84**, 79–110 (1993)
- Salem, M., "Thermodynamik der Hochdruckadsorption einfacher Gase an porösen Adsorbenzien," Dissertation, University of Leipzig, 1997.
- Sievers, U. and S. Schulz, *VDI-Forschungsheft*, **609**, 45–52 (1981). Sircar, S., "On the Measurements of Gibbsian Surface Excess," Air Products and Chemicals, Inc. (1999).
- Staudt, R., S. Bohn, F. Dreisbach, and J.U. Keller, "Gravimetric and Volumetric Measurements of Helium Adsorption Equilibria on

- Different Porous Solids," *Characterisation of Porous Solids*, **IV**, 261–266.
- Staudt, R., G. Saller, M. Tomalla, and J.U. Keller, "A Note on Gravimetric Measurements of Gas-Adsorption Equilibria," Ber. Bunsenges. Phys. Chem. Bd., 97(1), 98–105 (1993).
- Talu, O., "Needs, Status, Techniques and Problems with Binary Gas Adsorption Experiments," Adv. Colloid Interface Sci., 76/77, 227– 269 (1998).
- Vazquez, I., M.P. Russell, D.R. Smith, and R. Radebaugh, "Helium Adsorption on Activated Carbons at Temperatures Between 4 and 76 K," Advances in Cryogenic Engineering, 33, 1013–1021 (1987).